Fabrication of Mg-doped ZnO nanofibers with high purities and tailored band gaps
2019/11/27 21:20:34
admin
The tailored doping levels towards the band gap tunability are one of the challenges to push forward the potential application of one-dimensional (1D) ZnO nanostructures in the opto/electric nanodevices. In present work, we reported the exploration of Mg-doped ZnO nanofibers via electrospinning of poly-vinylpyrrolidone (PVP), Zn(CH3COO)(2) (ZnAc) and Mg(CH3COO)(2) (MgAc), followed by calcination in air. The resultant products were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM), and X-ray photoelectron spectroscopy (XPS). The optical measurements (UV-vis) of the Mg-doped ZnO nanofibers suggested that the optical band gaps of the ZnO nanofibers could be tuned from 3.33 to 3.40 eV as a function of the Mg doing levels. This tunability of the band gap of ZnO nanofibers with an intentional impurity could eventually be useful for optoelectronic applications. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复