400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage
2019/11/27 21:20:30 admin
Carbon nanofibers (CNFs) have been widely used in electrochemical energy storage devices because of their excellent conductivities, extremely large surface areas and structural stability. In energy storage devices like rechargeable batteries and supercapacitors, CNFs play multi-functional roles as active electrode materials, conductive additives and substrates for supporting active metal (oxides). Electrospinning offers a low cost and scalable technique to fabricate CNFs and their hybrids with tunable nanostructures. This paper summarizes various design strategies for producing random, aligned and core/shell structured fibers, and elucidates the influences of polymer precursors, processing parameters, conductive additives and catalysts on functional, morphological and structural characteristics of CNFs. The current start-of-the-art developments for applications in Li-ion batteries, supercapacitors, Na-ion batteries, Li-O-2 batteries and Li-S batteries are reviewed. Key issues that affect the electrochemical performance of the electrodes, such as the chemical and atomic structures, electrical conductivities, surface areas and pore size distribution of CNFs, and the particle size, shape and dispersion of metal (oxides) encapsulated in CNFs, are discussed and their solutions suggested. Future prospects on further optimization of the structure and performance, and challenges encountered in large-scale applications of electrospun CNFs are proposed. (C) 2015 Elsevier Ltd. All rights reserved.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享