400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers
2019/11/27 21:19:57 Zhang, Y. Z., Y. X. Liu, X. D. Li, Q. J. Wang and E. Q. Xie
Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu3+ doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu3+ is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu3+ doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu3+ doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.
  • Journal: Nanotechnology
  • Volume: 22
  • Issue: 41
  • Pages:
  • ISSN: 0957-4484
  • DOI: 10.1088/0957-4484/22/41/415702
  • Year: 2011
  • Number:
  • Type:
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享

为了更好的浏览体验,请使用谷歌,360极速,火狐或Edge浏览器