400-8910-119
首页 > 文献资料 > ES-Bank > 详情
The thermal effects on electrospinning of polylactic acid melts
2019/11/27 21:19:30 Zhou, H. J., T. B. Green and Y. L. Joo
We demonstrate that melt electrospinning can be a feasible way to produce sub-micron scale polylactic acid (PLA) fibers in this paper. This solvent-free approach to produce sub-micron scale fibers is more environmentally benign than common solution electrospinning processes, and has a potential to increase the production rate significantly. Our experimental results show that temperatures at the spinneret and in the spinning region are critical to produce sub-micron sized fibers: a high-speed photographic investigation reveals that when spinning temperature is below glass transition temperature, whipping of the jet is suppressed by fast solidification in the spinning region, leading to a larger jet diameter. Both thermal and mechanical degradations of PLA in melt electrospinning can be significant but no change in chemical composition is found. Due to rapid solidification, melt electrospun PLA fibers are mostly amorphous, and the small presence of beta crystals is noted in the sub-micron scale PLA fibers by XRD studies. The highly oriented structure of PLA fibers gives rise to cold crystallization at around 95 degrees C, and the degree of crystallinity of fibers increases with increasing the degree of annealing. Finally, PLA nanofibers have directly been electrospun onto cellulose filter media, and a drastic enhancement in collection efficiency of sub-micron sized dust particles is presented. Melt electrospun PLA nanofiber mats with no residual solvent may serve as better filter media and tissue scaffolds than those obtained from solution electrospinning processes. (c) 2006 Published by Elsevier Ltd.
  • Journal: Polymer
  • Volume: 47
  • Issue: 21
  • Pages: 7497-7505
  • ISSN: 0032-3861
  • DOI: 10.1016/j.polymer.2006.08.042
  • Year: 2006
  • Number:
  • Type:
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享

为了更好的浏览体验,请使用谷歌,360极速,火狐或Edge浏览器