Fabrication of Electrical Conductivity and Reinforced Electrospun Silk Nanofibers with MWNTs
2019/11/27 21:19:08
admin
Electrospinning is an effective technique for fabricating submicron to nanoscale fibers from synthetic polymer as well as natural proteins. In this study, multiwalled carbon nanotubes (MWNTs) were embedded via electrospinning by adding MWNTs into the spinning dope, and found to be well aligned along the fiber axis in the silk fibroin nanofibers. The morphology and microstructure of the electrospun nanofibers were characterised using a field emission scanning electron microscope (FESEM) and Transmission electron microscopy (TEM). X-ray diffraction (XRD) and TG-DTA were used to study the crystal structure of the silk/MWNTs composite nanofibres, carried out to alter the strength, toughness and electrical conductivity of silk nanofibers by adding a small amount of MWNTs. The electrospun random silk mats with 1% MWNTs had a Young's modulus, ultimate tensile strength and strain of 107.46 +/- 9.15MPa, 9.94 +/- 1.2MPa and 9.25 +/- 1.5%, respectively, and electrical conductivity increased to 1.2x10(-4)S/cm. The silk/MWNTs composite nanofibres could potentially be applied in nerve repair materials owing to their excellent mechanical properties and electrical conductivity.
0
网友评论
请遵循相关法律法规,理性发言
查看更多回复