400-8910-119
首页 > 专家风采 > 专家详情
专家图片
余彦 教授

中国科学技术大学

材料科学与工程系教授,博士生导师

个人履历

个人简历

2012.01至今:教授,博导;中国科学技术大学

2008.08―2011.12 :洪堡学者、博士后; 德国马普固体研究所(Max Planck Institute for Solid State Research)

2007.04―2008.07:博士后; 美国佛罗里达国际大学(Florida International  University)

2002.09―2006.12:博士;中国科学技术大学材料系

1997.09―2001.07:学士;安徽大学应用化学系

主要研究方向

功能材料的电化学制备、化学储能及相关电化学基础研究。主要研究方向为高性能锂离子电池、超级电容器、燃料电池等关键电极材料的设计合成、储能机制及性能。

荣誉与奖励

中组部首批青年千人计划入选者

研究方向

                                           高性能锂离子电池、钠离子电池、锂硫电池等关键电极材料的设计、合成及储能机制                                        

研究成果

2017-2011年发表文章:

129. High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode

Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia*, and Y. Yu*, Advanced Energy Materials, 2017, 1701336.

128. 2D sandwich-like nanosheets of ultrafine Sb nanoparticles anchored to graphene for high-efficiency sodium storage

X. Liu, M. Gao, H. Yang, X. Zhong, and Y. Yu*, Nano Research, 2017, accepted.

127. Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers

X. Sun, W. Li, X. Zhong, and Y. Yu*, Energy Storage Materials, 2017, 9, 112-118.

126. Na3V2(PO4)3 coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries

Y. Yao, Y. Jiang, H. Yang, X. Sun, and Y. Yu*,Nanoscale , 2017, 9, 10880-10885.

125. Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing

B. Yuan,L. Zeng, X. Sun, Y. Yu* and Q. Wang*,Nano Research, 2017, accepted.

124. Challenge and Perspective of NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries

S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier and Y. Yu*,Advanced Materials, 2017, 29, 201700431.

123. A Novel Hybrid Artificial Photosynthesis System Using MoS2 Embedded in Carbon Nanofibers as Electron Relay and Hydrogen Evolution Catalyst 

F.-J. Niu, C.-L. Dong, C. Zhu, Y.-C. Huang, M. Wang, J. Maier, Y. Yu* and S.-H. Shen* ,Journal of Catalysis, 2017, 352, 35-41.

122. Carbon-Coated Li3VO4 Spheres as Constituents of an Advanced Anode Material for a High-Rate Long-Life Lithium-Ion Battery 

L. Shen, S.Chen, J. Maier and Y. Yu*,Advanced Materials, 2017, 29, 201701571.

121. Peapod-like Li3VO4/N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors 

L. Shen, S. Chen, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu*,Advanced Materials, 2017, 29, 201700142.

121. Multichannel Porous TiO2 Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance

Y. Wu, Y. Jiang, J. ShI, L. Gu and Y. Yu*,Small, 2017, 13, 1700129.

120. Binding S0.6Se0.4 in 1D Carbon Nanofiber with C - S Bonding for High-Performance Flexible Li–S Batteries and Na–S Batteries

Y. Yao, L. Zeng,Shuhe Hu, Y. Jiang, B. Yuan, and Y. Yu*,Small, 2017, 13, 1603513.

119. Confined Amorphous Red Phosphorus in MOF-Derived N-Doped Microporous Carbon as a Superior Anode for Sodium-Ion Battery

W. Li, S. Hu, X. Luo, Z. Li, X. Sun, M. Li, F. Liu, and Y. Yu* ,Advanced Materials, 2017, 29, 1605820. 

118. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk–Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries

J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin, F. Chiang, R. Hu, J. Liu, . Sun, L. Gu, J. Maier, Y. Yu* , and M. Zhu*, Nano Letters , 2017, pp 1–26 

117. Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries

S. Chen, L. Shen, P. A. van Aken, J. Maier, and Y. Yu* ,Advanced Materials , 2017, 29, 1605650. 

116. Recent progress in Li–S and Li–Se batteries

L. Zeng,W. Li,Y. Jiang, and Y. Yu* ,Rare Metals , 2017, pp 1–26. 

115. High Performance Graphene/Ni2P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk-Shell-Like Nanostructural Design

C. Wu, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu*,Advanced Materials, 2017, 29, 1604015. 

114. Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture

J. Ni, W. Wang, C.Wu, H. Liang, J. Maier, Y. Yu* and L. Li*,Advanced Materials, 2017, 29, 1605607. 

113. Germanium Encapsulated in Sulfur and Nitrogen Co-doped 3D Porous Carbon as Ultra-Long-Cycle Life Anode for Lithium Ion Batteries

C. Yang, Y. Jiang, X. Liu, X. Zhong, and Y. Yu*,Journal of Materials Chemistry A, 2016, 4, 18711 - 18716. 

112. Carbon-Coated Na3V2(PO4)3 Anchored on Freestanding Graphite Foam for High-Performance Sodium-Ion Cathodes

X. Zhong, Z. Yang, Y. Jiang, W. Li, L. Gu, and Y. Yu*,ACS Applied Materials & Interfaces, 2016, 8, 32360–32365. 

111. Highly Reversible and Ultrafast Sodium Storage in NaTi2(PO4)3 Nanoparticles Embedded in Nanocarbon Networks

Y. Jiang, J. Shi, M. Wang, L. Zeng, L. Gu, and Y. Yu*,ACS Applied Materials & Interfaces, 2016, 8, 689–695. 

110. One-Dimensional Na3V2(PO4)3/C Nanowires as Cathode Materials for Long-Life and High Rate Na-Ion BatteriesY. Jiang, Y. Yao, J. Shi, L. Zeng, L. Gu, and Y. Yu*,ChemNanoMat, 2016, 2, 726–731. 

109. A Flexible S1−xSex@Porous Carbon NanoFibers (x≤0.1) Thin Film with High Performance for Li-S Batteries and Room-Temperature Na-S Batteries

L. Zeng, Y. Yao, J. Shi, Y. Jiang, W. Li, L. Gu, and Y. Yu*,Energy Storage Materials, 2016, 5, 50-57. 

108. Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries

Y. Wu, X. Liu, Z. Yang, L. Gu and Y. Yu*,Small, 2016, 12, 3522–3529. 

107. Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning

W. Li, C. Zeng, Y. Wu and Y. Yu*,Science China Materials, 2016, 59, 287-321. 

106. Peapod-Like Carbon-Encapsulated Cobalt Chalcogenide Nanowires as Cycle-Stable and High-Rate Materials for Sodium-Ion Anodes

C. Wu, Y. Jiang, P. Kopold, P. A. van Aken, J. Maier and Y. Yu*,Advanced Materials, 2016, 28, 7276–7283.

105. Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on Carbon Layer: In-Situ Hybridization and Improved Sodium Storage

Y. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier and Y. Yu*,Advanced Materials, 2016, 28, 7774–7782.

104. Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity

W. Li, Z. Yang, M. Li, Y. Jiang, X. Wei, X. Zhong, L. Gu and Y. Yu*,Nano Letters, 2016, 16, 1546–1553. 

103. Superior Sodium Storage in Na2Ti3O7 Nanotube Arrays through Surface Engineering

J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu* and L. Li*,Advanced Energy Materials, 2015, 6, 1502568.

102. Superior Sodium Storage in Three-Dimensional Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network

M. Wang, Z. Yang, W. Li, L. Gu, and Y. Yu*,Small, 2016, 12, 2559-2566.

101. MOF-Derived Hollow Co9S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage.J. Liu, C. Wu, D. Xiao, P. Kopold, L. Gu, P. A. van Aken, J. Maier and Y. Yu*,Small, 2016, 12, 2354–2364.

100. Influence of Carbon Matrix Dimensions on the Electrochemical Performance of Germanium Oxide in Lithium-Ion Batteries.X. Wei, W. Li, L. Zeng and Y. Yu*,Particle and Particle Systems Characterization, 2016, 33, 524–530.

99. High Power-High Energy Sodium Battery Based on Threefold Interpenetrating Network

C. Zhu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu*,Advanced Materials, 2015, 28, 2409–2416

98. Self-Supported Nanotube Array of Sulfur-Doped TiO2 Enabling Ultrastable and Robust Sodium Storage.J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu* and L. Li*,Advanced Materials, 2016, 11, 2259–2265. 

97. Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube Graphene Hybrid Architectures for Lithium-Sulfur Batteries.Y. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier and Y. Yu*,Advanced Functional Materials, 2016, 26, 1112–1119.

96. FeS@C on Carbon Cloth as Flexible Electrode for Both Lithium and Sodium Storage

X. Wei, W. Li, J. Shi, L. Gu, Y. Yu*,ACS Applied Materials & Interfaces, 2015, 7, 27804–27809. 

95. Nanoconfined Antimony in Sulphur and Nitrogen Co-doped Three-Dimensionally (3D) Interconnected Macroporous Carbon for High-Performance Sodium-Ion Batteries

C. Yang, W. Li, Z. Yang, L. Gu and Y. Yu*,Nano Energy, 2015, 18, 12-19. 

94. MoS2–graphene Nanosheet–CNT Hybrids with Excellent Electrochemical Performances for Lithium-Ion Batteries

F. Pan, J. Wang, Z. Yang, L. Gu and Y. Yu*,RSC Advances, 2015, 5, 77518-77526. 

93. Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage

M. Wang, Z. Yang, J. Wang, W. Li, L. Gu and Y. Yu*,Small, 11, 5381–53873. 

92. General Strategy for Fabricating Sandwich-like Graphene-Based Hybrid Films for Highly Reversible Lithium Storage

X. Zhong, Z. Yang, X. Liu, J. Wang, L. Gu, and Y. Yu*,ACS Applied Materials & Interfaces, 2015, 7 (33), 18320–18326. 

91. Carbon Coated NASICON Structure Material Embedded in Porous Carbon Enabling Superior Sodium Storage Performance: NaTi2(PO4)3 as An Example

Y. Jiang, L. Zeng, J. Wang, W. Li, F. Pan and Y. Yu*,Nanoscale, 2015, 7, 14723-14729. 

90. In situ Reduction and Coating of SnS2 Nanobelts for Free-standing SnS@polypyrrole-nanobelt/carbonnanotube Paper Electrodes with Superior Li-Ion Storage

J. Liu , Y. Wen, P. A. van Aken, J. Maier and Y. Yu*,Journal of Materials Chemistry A, 2015, 3, 5259-5265. 

89. Nanosheets of Earth-Abundant Jarosite as Novel Anodes for HighRate and Long-Life Lithium-Ion Batteries

Y. Ding, Y. Wen, C. Chen, P. A. van Aken, J. Maier and Y. Yu*,ACS Applied Materials & Interfaces, 2015, 7 (19), 10518–10524. 

898. Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Con?nement Replacement for Enhanced Lithium and Sodium Storage

Y. Ding, C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu*,Small, 2016, 11, 6026–6035. 

87. Three-dimensionally Interconnected Nickel–Antimony Intermetallic Hollow Nanospheres as Anode Material for High-rate Sodium-ion Batteries

J. Liu, Z. Yang, J. Wang, L. Gu, J. Maier and Y. Yu*,Nano Energy, 2015, 16, 389–398. 

86. Generalizable Synthesis of Metal-Sulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage

C. Wu, J. Maier and Y. Yu*,Advanced Materials, 2016, 28, 174-180. 

85. Jarosite Nanosheets Fabricated via Room-Temperature Synthesis as Cathode Materials for High-Rate Lithium Ion Batteries

Y, Ding, Y, Wen, P. A. van Aken, J. Maier and Y. Yu*,Chemistry of Materials, 2015, 27 (8), 3143–3149. 

84. An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO 4 )3 in a Porous Graphene Network

X. Rui, W. Sun, C. Wu, Y. Yu* and Q. Yan*,Advanced Materials, 2015, 27, 6670–6676. 

83. Uniform Yolk-Shell Sn4P3@C Nanospheres as High-Capacity and Cycle-Stable Anode Materials for Sodium-Ion Batteries

J. Liu, C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu*,Energy & Environmental Science, 2015, 8, 3531-3538. 

82. Engineering Nanostructured Electrode Materials for High Performance Sodium Ion Batteries: Case Study of 3D Porous Interconnected WS2/C Nanocomposite

C. Zhu, P. Kopold, P. A. van Aken, J. Maier and W. Li and Y. Yu*,Journal of Materials Chemistry A, 2015, 3, 20487-20493. 

81. A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries

C. Zhu, P. Kopold, W. Li, P. A. van Aken, J. Maier and Y. Yu*,Advanced Science, 2015, 2, 1500200. 

80. High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires

C. Zhu, Y. Wen, P. A. van Aken, J. Maier, Y. Yu*,Advanced Functional Materials, 2015, 25, 2335-2342. 

79. Sn-Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for High-Rate and Long Life Li-Ion Batteries

C. Wu, J. Maier, Y. Yu*,Advanced Functional Materials, 2015, 25, 3488-3496. 

78. Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes

C. Wu, P. Kopold, Y. L. Ding, P. A. van Aken, J. Maier, Y. Yu*,ACS Nano, 2015,9,6610-6618. 

77. Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li–sulfur batteries

C. Wu, L. Fu, J. Maier, Y. Yu*,Journal of Materials Chemistry A, 2015, 3, 9438-9445. 

76. Rapid and Up-Scalable Fabrication of Free-Standing Metal Oxide Nanosheets for High-Performance Lithium Storage

Y. L. Ding, Y. Wen, P. A. van Aken, J. Maier, Y. Yu*,Small, 2015, 11, 2011-2018. 

75. Nanosheets of Earth-Abundant Jarosite as Novel Anodes for High-Rate and Long-Life Lithium-Ion Batteries

Y. L. Ding, Y. Wen, C. C. Chen, P. A. van Aken, J. Maier, Y. Yu*,ACS applied materials & interfaces, 2015, 7, 10518–10524. 

74. Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries

J. Wang, Z. Yang, F. Pan, X. Zhong, X. Liu, L. Gu, Y. Yu*,RSC Advances, 2015, 5, 55136-55142. 

73. Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries

X. Liu, Y. Wu, Z. Yang, F. Pan, X. Zhong, J. Wang, L. Gu, Y. Yu*,Journal of Power Sources, 2015, 293, 799-805. 

72. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries

W. Li, M. Li, M. Wang, L. Zeng, Y. Yu*,Nano Energy, 2015, 13, 693-701. 

71. Three-Dimensionally Interconnected TaS3 Nanowire Network as Anode for High-Performance Flexible Li-Ion Battery

W. Li, L. Yang, J. Wang, B. Xiang*, Y. Yu*,ACS applied materials & interfaces, 2015, 7, 5629-5633. 

70. Flexible copper-stabilized sulfur–carbon nanofibers with excellent electrochemical performance for Li–S batteries

L. Zeng, Y. Jiang, J. Xu, M. Wang, W. Li, Y. Yu*,Nanoscale, 2015, 7, 10940-10949. 

69. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries

J. Liu, P. Kopold, P. A. van Aken, J. Maier, Y. Yu*, Angewandte Chemie - International Edition. 2015, 54, 9632–9636.

68. Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries

L. Zeng, X. Wei, J. Wang, Y. Jiang, W. Li, Y. Yu*, 2015, Journal of Power Sources,2015,281,461–469.

67. Nanoconfined Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries

Y. Jiang, Z. Yang, W. Li, L. Zeng, F. Pan, M. Wang, X. Wei, G. Hu, L. Gu and Y. Yu*, 2015, Advanced Energy Materials, 2015, 5, 1402104.

66. Carbon-Coated Germanium Nanowires on Carbon Nanofibers as Self-Supported Electrodes for Flexible Lithium-Ion Batteries 

W. Li, M. Li, Z. Yang, J. Xu, X. Zhong, J. Wang, L. Zeng, X. Liu, Y. Jiang, X. Wei, L. Gu and Y. Yu*, 2014, Small, 2015,11,2762-2767. 

65. V6O13 Nanotextiles Assembled from Interconnected Nanogrooves as Cathode Materials for High-Energy Lithium Ion Batteries 

Y.-L. Ding, Y-. Wen, C. Wu, P. A. van Aken, J Maier, and Y. Yu*, Nano Letters, 2015, 15 (2), 1388–1394. 

64. In situ reduction and coating of SnS2 nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage 

J. Liu, Y.-R. Wen, P. A. van Aken, J. Maier, and Y. Yu*, Journal of Materials Chemistry A 3(10), 5259–5265 (2015). 

63. Gram-Scale Synthesis of Graphene-Mesoporous SnO2 Composite as Anode for Lithium-ion Batteries

X. Liu, X. Zhong, Z. Yang, F. Pan, L. Gu and Y. Yu*, 2014, Electrochimica Acta,2015,152,178-186. 

62. Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage

J. Liu, Y. Wen, P. A. van Aken, J. Maier and Y. Yu*, Nano letters, 2014 , 14 (11), pp 6387–6392. 

61. Facile synthesis of germanium–reduced graphene oxide composite as anode for high performance lithium-ion batteries

X. Zhong, J. Wang, W. Li, X. Liu, Z. Yang, L. Gu and Y. Yu*, RSC Advances, 2014, 4, 58184-58189.

60. Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries

J. Wang, Z. Yang, W. Li, X. Zhong, L. Gu, Y. Yu*, Journal of Power Sources, 2014, 266, 323-331.

59. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries

W. Li, Z. Yang, Y. Jiang, Z. Yu, L. Gu and Y. Yu*, Carbon, 2014, 78, 455-462.

58. A Flexible Porous Carbon Nanofibers‐Selenium Cathode with Superior Electrochemical Performance for Both Li‐Se and Na‐Se Batteries

L. Zeng, W. Zeng, Y. Jiang, X. Wei, W. Li, C. Yang, Y. Zhu* and Y. Yu*, Advanced Energy Materials, 2015, 5, 1401377.

57. Fast Li Storage in MoS2‐Graphene‐Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures

C. Zhu, X. Mu, P. A. van Aken, J. Maier and Y. Yu*, Advanced Energy Materials, 2015, 5, 1401170.

56. Lithium potential variations for metastable materials: case study of nanocrystalline and amorphous LiFePO4

C. Zhu, X. Mu, J. Popovic, K. Weichert, P. A. van Aken, Y. Yu* and J. Maier, Nano letters, 2014, 14, 5342-5349. 

55. Carbon‐Encapsulated Pyrite as Stable and Earth‐Abundant High Energy Cathode Material for Rechargeable Lithium Batteries

J. Liu, Y. Wen, Y. Wang, P. A. van Aken, J. Maier and Y. Yu*, Advanced Materials., 2014, 26, 6025-6030. 

54. Direct evidence of a conversion mechanism in a NiSnO3 anode for lithium ion battery application

L. Fu, K. Song, X. Li, P. A. van Aken, C. Wang, J. Maier and Y. Yu*, RSC Advances, 2014, 4,36301-36306. 

53. Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage

Y.-L. Ding, Y. Wen, P. A. Van Aken, J. Maier and Y. Yu*, Nanoscale, 2014, 6, 11411-11418. 

52. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage

C. Zhu, X. Mu, P. A. Vanaken, Y. Yu* and J. Maier*, Angewandte Chemie - International Edition, 2014, 53, 2152-2156. 

51. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes

C. Zhu, K. Song, P. A. Van Aken, J. Maier and Y. Yu*, Nano Letters, 2014, 14, 2175-2180. 

50. Ge/C Nanowires as High-Capacity and Long-Life Anode Materials for Li-Ion Batteries

J. Liu, K. P. Song, C. Zhu, C.-C. Chen, P. A. van Aken, Y. Yu*, and J. Maier , ACS Nano,2014, 8 (7), pp 7051–7059. 

49. Self-supported Li4Ti5O12@C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries

J. Liu, K. Song, P. A. Van Aken, J. Maier and Y. Yu*, Nano Letters, 2014, 14 (5), 2597–2603. 

48. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries

J. Liu, K. Tang, K. P. Song, P. A. van Aken, Y. Yu* and J. Maier, Nanoscale, 2014,6, 5081-5086. 

47. Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite

X. Liu, J. Cheng, W. Li, X. Zhong, Z. Yang, L. Gu and Y. Yu*, Nanoscale, 2014, 6, 7817-7822. 

46. Free-standing porous carbon nanofibers/CNT hybrid for flexible Li-S battery cathode

L. Zeng, F. Pan, W. Li, Y. Jiang, X. Zhong and Y. Yu*, Nanoscale, 2014, 6, 9579-9587. 

45. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries

W. Li, Z. Yang, J. Cheng, X. Zhong, L. Gu and Y. Yu*, Nanoscale, 2014, 6, 4532-4537. 

44. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance

L. Fu, K. Tang, K. Song, P. A. Van Aken, Y. Yu* and J. Maier, Nanoscale, 2014, 6, 1384-1389. 

43. N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties

L. Zeng, W. Li, J. Cheng, J. Wang, X. Liu and Y. Yu*, RSC Advance, 2014,4, 16920-16927. 

42. Three-dimensional (3D) bicontinuous au/amorphous-Ge thin films as fast and high-capacity anodes for lithium-ion batteries

Y. Yu*, C. Yan*, L. Gu*, X. Lang, K. Tang, L. Zhang, Y. Hou, Z. Wang, M. W. Chen, O. G. Schmidt and J. Maier, Advanced Energy Materials, 2013, 3, 281-285. 

相关推荐
暂无相关推荐
热门排行
1
采用电纺丝法制备了前驱体纳米纤维膜,固化的纳米纤维均匀分布。在随后的热解过程中,PVP被碳化成相互连接的3D碳骨架,纳米纤维形态得到了很好的保存。

分享

为了更好的浏览体验,请使用谷歌,360极速,火狐或Edge浏览器